Reg. No.				

G. VENKATASWAMY NAIDU COLLEGE (AUTONOMOUS), KOVILPATTI - 628 502.

UG DEGREE END SEMESTER EXAMINATIONS - NOVEMBER 2024.

(For those admitted in June 2023 and later)

PROGRAMME AND BRANCH: B.Sc., MATHEMATICS

SEM	CATEGORY	COMPONENT	COURSE CODE	COURSE TITLE
I	PART - III	CORE-2	U23MA102	DIFFERENTIAL CALCULUS

Date & Session: 12.11.2024 / FN Time: 3 hours Maximum: 75 Marks

Course Outcome	Bloom's K-level	Q. No.	<u>SECTION - A (10 X 1 = 10 Marks)</u> Answer <u>ALL</u> Questions.			
CO1	K1	1.	If $y = e^{ax}$ then $y_n = \underline{\hspace{1cm}}$. a) e^{ax} b) $e^{ax/a}$ c) $a e^{ax}$ d) $a^n e^{ax}$			
CO1	K2	2.	a) e^{ax} b) $e^{ax/a}$ c) $a e^{ax}$ d) $a^{n}e^{ax}$ If $\sqrt{x} + \sqrt{y} = 5$, then $y_2 = $ a) $\frac{1}{10}$ b) $\frac{25}{x^{\frac{3}{2}}}$ c) $\frac{5}{2x^{\frac{3}{2}}}$ d) 0			
CO2	K1	3.	A partial differential equation requires a) Exactly one independent variable b) Two or more independent variables c) More than one dependent variable d) Equal number of dependent and independent variables			
CO2	K2	4.	If f (x, y, z) = 0, then the value of $\frac{\partial x}{\partial y}$, $\frac{\partial y}{\partial z}$, $\frac{\partial z}{\partial x}$. a) 1 b) -1 c) 0 d) none of these			
CO3	K1	5.	What is the minimum value of the function $ x + 3 - 2$. a) 1 b) -2 c) 2 d) -5			
CO3	K2	6.	The degree of the function $f(x, y) = x^3 - 2x^2y + 3xy^2 + y^3$. a) 1 b) 2 c) 3 d) 4			
CO4	K1	7.	A curve which touches each member of a given family of curves is called of that family. a) Envelope b) Parameter c) Curvatures d) Centre of curvatures			
CO4	K2	8.	Envelope is to all the curves in a family of curves. a) Normal b) Parallel c) Tangent d) Perpendicular			
CO5	K1	9.	The locus of the center of curvature of a curve is called a) Evolute b) Involute c) Center d) Radius of curvature			
CO5	K2	10.	The radius of curvature of a flat surface is a) 0 b)1 c) -1 d) Infinity			
Course Outcome	Bloom's K-level	Q. No.	$\frac{\text{SECTION} - B}{\text{Answer }} \text{(5 X 5 = 25 Marks)}$ Answer ALL Questions choosing either (a) or (b)			
CO1	КЗ	11a.	If $xy = ae^x + be^{-x}$. Prove that $xy_2 + 2y_1 - xy = 0$ (OR)			
CO1	КЗ	11b.	Find y_n where $y = \frac{3}{(x+1)(2x-1)}$.			

CO2	КЗ	12a.	Find the partial differential co.efficients of $u = \sin(ax + by + cz)$. (OR)
CO2	КЗ	12b.	If $x^3 + y^3 + 3axy = 0$, find dy/dx.
CO3	K4	13a.	Verify Euler's theorem when $u = x^3 + y^3 + z^3 + 3xyz$. (OR)
CO3	K4	13b.	Find the maximum or minimum values of $2(x^2 - y^2) - x^4 + y^4$.
CO4	K4	14a.	Find the envelope of the family of circles $(x - a)^2 + y^2 = 2a$ where a is the parameter.
CO4	K4	14b.	Find the envelope of the family of a straight lines $y + tx = 2at + at^3$, the parameter being t.
CO5	K5	15a.	Determine the radius of the curvature of $x^4 + y^4 = 2$ at the point (1, 1) (OR)
CO5	K5	15b.	Find the co-ordinates of the centre of curvature of the curve $xy = 2$ at $(2,1)$.

Course	Bloom's K-level	Q. No.	SECTION - C (5 X 8 = 40 Marks) Answer ALL Questions choosing either (a) or (b)
CO1	КЗ	16a.	Find the n th differential coefficient of cos ⁵ ø sin ⁷ ø. (OR)
CO1	КЗ	16b.	If $y = \frac{\log x}{x^2}$, show that $x^3y_3 + 6x^2y_2 + 4xy_1 - 4y = 0$.
CO2	K4	17a.	If $z = e^x$ ($x \cos y - y \sin y$), show that $\frac{\partial^2 z}{\partial x^2} + \frac{\partial^2 z}{\partial y^2} = 0$.
CO2	K4	17b.	If $u = tan^{-1} \frac{x^3 + y^3}{x - y}$, prove that $x \frac{\partial u}{\partial x} + y \frac{\partial u}{\partial y} = \sin 2u$. Transform $\frac{\partial^2 v}{\partial x^2} + \frac{\partial^2 v}{\partial y^2}$ into polar coordinates.
CO3	K4	18a.	Transform $\frac{\partial^2 v}{\partial x^2} + \frac{\partial^2 v}{\partial y^2}$ into polar coordinates. (OR)
CO3	K4	18b.	A tent having the form of a cylinder surmounted by a cone is to contain a given volume. If the canvass required is minimum, Show that the altitude of the cone is twice that of the cylinder.
CO4	K5	19a.	Find the envelope of family of straight lines ax + by=1, where a and b are parameters connected by the relation ab = 1. (OR)
CO4	K5	19b.	Determine the envelope of $x\sin\theta - y\cos\theta = a\theta$, where θ being the parameter.
CO5	K5	20a.	Find the evolute of the ellipse. (OR)
CO5	K5	20b.	Find the radius of the curvature of the curve $r^n = a^n \cos n\theta$.